PITHAPUR RAJAH'S GOVERNMENT COLLEGE (A), KAKINADA

DEPARTMENT OF MATHEMATICS

Laveti. Surya Bala Ratna Bhanu _{M.Sc ,B.Ed}

Lecturer in Mathematics

Phone:7330946793,9704768781.

Email: <u>bhanuasdgdc@gmail.com</u>

ABSTRACT ALGEBRA

Unit-1:Groups

Some basic properties of a Group

Theorem: In a group G, identity element is unique.

Proof: Let (G, ...) be a group.

Now we have to show that identity element in G is unique.

Suppose that e_1 , e_2 be two identity elements in G.

For the identitys element e_1 ,

$$e_2e_1 = e_1e_2 = e_2$$
, for $e_2 \in G$ ----(1)

For the identity element e_2 ,

$$e_1 e_2 = e_2 e_1 = e_1 \text{ for } e_1 \in G -----(2)$$

From (1) & (2), we have $e_1 = e_2$.

Therefore, we proved that identity element in a group is unique.

Theorem: In a group G, inverse of any element is unique.

Proof: Let (G, \cdot) be a group and e be the identity element in G.

Let a be an arbitrary element in G.

To prove the theorem, we have to prove that inverse of a is unique.

Suppose that b and c be two inverse elements of a in G. Then ab = ba = e and ac = ca = e

Consider
$$c(ab) = c(e) = c$$
(1) and $c(ab) = (ca)b = e.b = b$ (2)

From (1)&(2), we have b = c.

Therefore the proof follows.

Theorem: Cancellation laws hold in a group. (or)

Let G be a group. Then for $a, b, c \in G$,

$$ab = ac \Rightarrow b = c \text{ (left)}$$
 and $ba = ca \Rightarrow b = c \text{ (right)}$

Proof: Let (G, .) be a group.

Let *e* be the identity element in *G*.

For $a, b, c \in G$ and taking ab = ac.

Pre multiply the above equation with a^{-1} on both sides, we get

$$\Rightarrow a^{-1}(ab) = a^{-1}(ac)$$

$$\Rightarrow (a^{-1}a)b = (a^{-1}a)c$$

$$\Rightarrow eb = ec$$

$$\Rightarrow b = c.$$
Similarly, taking $ba = ca$

$$\Rightarrow (ba)a^{-1} = (ca)a^{-1} \text{ (Post multiply with } a^{-1})$$

$$\Rightarrow b(aa^{-1}) = c(aa^{-1})$$

$$\Rightarrow be = ce$$

Hence the Cancellation laws holds in a group.

 $\Rightarrow b = c$.

Thank you